Chimie organique

Chapitre 3 : Additions sur les hydrocarbures insaturés

Savoir	Savoir-faire
Alcène : structure, spectroscopie, réactivité	Ecrire et nommer un alcène. Identifier la C=C en IR et les H d'alcènes en RMN
Hydratation des alcènes	
Hydroboration des alcènes	Ecrire les mécanismes réactionnels, justifier la stéréochimie et le régiosélectivité
Hydrogénation des alcènes	stereoemine et le regioselectivite

Introduction

Les composés éthyléniques constituent un ensemble plus large que les alcènes, de composés comportant une double liaison carbone-carbone. Les hydrocarbures cycliques ayant une double liaison ou cyclènes appartiennent à cette catégorie. On notera qu'une double liaison éthylénique ne constitue pas un groupe fonctionnel puisqu'elle fait partie de la chaîne carbonée.

I) <u>Les</u>	<u>alcènes</u>
	1) <u>Structure</u>

Double liaison C=C

Stéréochimie

Orbitales

2) Spectroscopie

On retrouve les principales informations suivantes en spectroscopie :

• Spectroscopie UV : transition $\pi \to \pi^*$

- Spectroscopie IR: élongation C=C à 1650 cm⁻¹.
- Spectroscopie RMN:
 - o déplacements chimiques des H éthylèniques vers 5 et 6 ppm.
 - o Détermination des position cis ou trans avec les constantes de couplage

3) Réactivité

Nucléophilie des alcènes

Réactions d'oxydo-réduction

II) <u>Hydratation des alcènes</u>

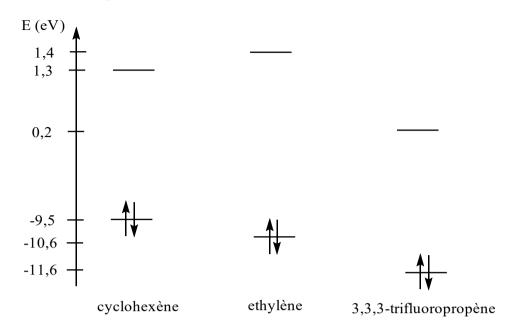
1) Réaction

Mode opératoire:

- Mélange alcène + H₂O + acide sulfurique (H₂SO₄) (souvent un mélange 50/50 eau/acide).
- Température ambiante ou léger chauffage.

Bilan: la réaction permet d'obtenir un alcool

Exemple


CH₃

$$+ H_2O \xrightarrow{(H_2SO_4 / H_2O)} r = 50\%$$

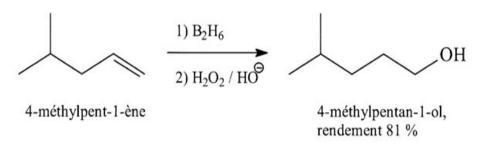
- → réaction **régiosélective**.
- → l'acide sulfurique n'apparaît pas dans le bilan de la réaction : il s'agit d'un catalyseur.

2) <u>Mécanisme</u>

3) Réactivité comparée des alcènes

4) <u>Transposition</u>

L'hydratation du 3-méthylbut-1-ène conduit majoritairement au 2-méthylbutan-2-ol au lieu du 3-méthylbutan-2-ol.


III) Réaction d'hydroboration

1) Les boranes

On utilise le borane BH₃ pour effectuer des réactions d'hydroboration. Il s'agit d'un gaz toxique et inflammable.

Réactivité:

2) Bilan simplifié

Intérêt : transformer un alcène en alcool avec le groupement OH en bout de chaîne.

Analogue : hydratation des alcènes (régiolsélectivité différente)

3) <u>Mécanisme</u>

Première étape : addition électrophile

Caractéristiques de cette étape :

•	Régiosélective : addition du bore sur le carbone le moins encombré → encombrement
	stérique.

• Stéréosélective : addition SYN

• Peut se répéter : on peut additionner jusqu'à 3 alcènes sur un borane.

Deuxième étape : oxydation des trialkylboranes

On passe de l'alkylborane à l'alcool:

$$\begin{array}{c|c} & & & \\ &$$

En détail:

• Addition de l'ion HOO⁻:

$$HO - \overline{\underline{O}}I + \overline{\underline{D}}B - R \longrightarrow H\overline{\underline{O}} - \overline{\underline{O}} - \overline{\underline{B}} - R$$

• Transposition de l'intermédiaire organoborique :

Cette étape se déroule avec rétention de configuration.

On peut la réaliser trois fois :

• Hydrolyse en alcool:

4) Aspect stéréochimique

La réaction possède les caractéristiques suivantes :

- Addition diastéréospécifique SYN
- Rétention de configuration.

Exemple:

III) Réaction d'hydrogénation catalytique

1) <u>Bilan</u>

Exemples:

$$-C \equiv C - + H_2 - H$$

$$+ H_2 - C - C$$

$$+ H_2 - H$$

$$+ H_2 - C - C$$

$$+ H_3 - H$$

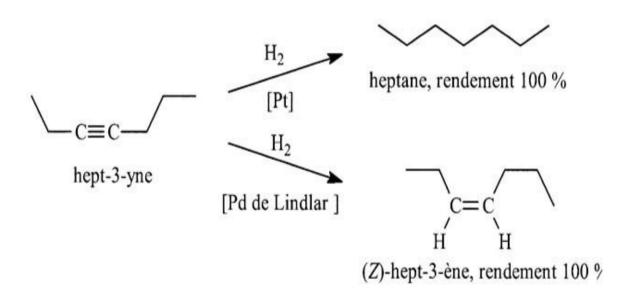
Bilan:

$\underline{Caract\'{e}ristiques}:$

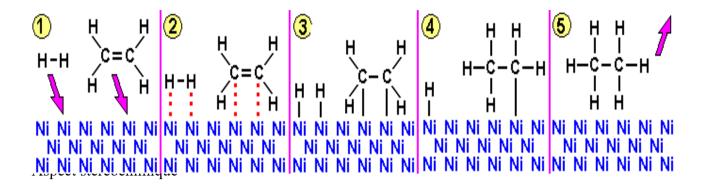
• Réaction fortement exothermique

• Pratiquement totale dans les conditions usuelles

• Réaction renversable


2) Catalyse hétérogène

Dans ce type de catalyse, les réactifs et le catalyseur appartiennent à des phases distinctes. Il s'agit souvent d'un métal possédant une grande surface spécifique.


Exemples de catalyseur

- Platine ou palladium déposés sur du carbone.
- catalyseur d'Adams : dioxyde de platine PtO₂ réduit en Pt par H₂ in situ.
- nickel de Sabatier préparé par réduction de NiO par H₂.
- nickel de Raney préparé en attaquant un alliage Ni-Al par la soude.
- Catalyseur de Lindlar Pd sur CaCO₃ désactivé par un mélange d'acétate de plomb et de quinoléine → réduction d'alcyne en alcène.

Exemple de réactions

Mécanisme réactionnel

Caractéristiques:

- SYN addition
- Réaction diastéréospécifique

Exemples

3) Catalyse homogène

Dans ce type de catalyse, les réactifs et le catalyseur appartiennent à la même phase . On utilise un complexe comme catalyseur.

On utilise souvent le catalyseur de Wilkinson à base de rhodium :

<u>Intérêt</u>: chimioselectif

Stéréochimie: Syn-addition

Etapes:

- Addition oxydante du dihydrogène sur le métal
- Echange de ligands alcène/phosphine autour du métal
- Insertion d'un hydrogène sur l'alcène coordonné
- Elimination réductrice, qui conduit à l'obtention finale de l'alcane.